UV-CDAT 2013 Near-term Plans and Directions
Overall Plans and Directions

- Reduce executable size and stress test for system performance on LCFs and other platforms
- Review and refine graphical user interface and workflow
- Allow fast implementation and integration of external software via “Plug-in Wrappers”
- Refine the integration of UV-CDAT as a backend service to ESGF and interact directly with ESGF to allow full client-side usage
- Continue packaging and user documentation
- Present live on-line courses on UV-CDAT and generate as video tutorials hosted on YouTube.
- Provide ultra-scale analysis and visualization services to BER and NASA climate research teams
- Software Quality Assurance
Software Process

• Agile Software Development:
 – UV-CDAT Agile software development benefits from Kitware’s suite of tools such as CMake, CTest, and CDash.

• Sophisticated Build System:
 – Builds packages and their dependencies, tracks build order, logs errors and warnings, and supports grouping of packages by a common attribute.

• Provide a control suite to link documentation, dashboards, and issue tracker

• Improve UV-CDAT build process on Supercomputers
 – Automate the release process
 – Provide nightly binary installers for various platforms on dashboards
 – Package specific compiler and linker flags
 – Enable package specific tests
 – Provide a general interface for batch tests
 – Provide a general purpose unit testing framework
Access and Analysis

• Improve ESGF interface based on user feedback
 – Save searches and integrate GridFTP support
• Extend ESGF Web server support to reduce ESGF data movement (i.e., remote data reduction and analysis)
 – Django API (mod-wsgi) server
 – Simple analysis and data reduction to start with
• Development of standard analysis and diagnostics
• U-ReAD
 – Easy integration of scientists’ diagnostics
 – Documentation of integrated code
• User Support
 – Workshop and Conference Tutorials
 – Documentation
• Installation support
 – Smart installation to include only the components or packages you want
 – Continue to support the many flavors of Linux and port to Windows
 – Support ESGF and web-based UV-CDAT and remote analysis
• Refactor certain areas of the codebase making them more maintainable and less prone to errors
VisTrails

• Enhance the user interface to make the design more consistent, simple, and modern
• Extend the VisTrails API to reduce the amount of work for UV-CDAT plot and plugin developers
• Expand the Multi-scale Synthesis and Terrestrial Intercomparison Project work by adding higher-level access in the next UV-CDAT release and broadening its use in other UV-CDAT packages
• Refactor certain areas of the codebase making them more maintainable and less prone to errors
DV3D

- Develop new DV3D plots and features
 - As requested by the scientific user community
- Refine the integration with other UVCDAT components
 - ParaView, ViSUS, EDEN, ParCAT, etc.
- Develop new high performance enhancements
 - Address the challenges of very large datasets
- Further develop the distributed analysis components
 - Interactive hyperwall visualization of climate simulation data
- Develop DV3D/UVCDAT-based scientific workbenches
 - Customized for specific research programs
- Give presentations and workshops
 - Demonstrate how these tools can transform the scientific workflow
- Support users
 - Develop documentation and tutorials
ViSUS Plugin

• Integrate plugin more tightly into the UV-CDAT infrastructure
• Expand processing capabilities to include blending of different time scales
• Provide automatic and potentially on-the-fly data conversion utilities
• Expand ViSUS capabilities to block regular meshes
UV-CDAT ParaView Integration and Spatio-Temporal Pipeline

• Tightly-Coupled Integration
 – ParaView is exposed to UV-CDAT via VisTrails workflow. This design enables provenance.
 – Provides custom interface to Climate Scientist. Adding a new representation is easy. The interface shows individual GUI components of each representation.
 – Supports CDMSVariable. Users can drag-and-drop CDMSVariable on a ParaView plot.

• MOC and MHT
 – Parallel implementation of Meridional Overturning Circulation (MOC) and Meridional Heat Transport (MHT) are both implemented in ParaView.

• Spatio-Temporal Pipeline: UV-CDAT Use Case 1
 – The spatio-temporal pipeline is designed for use on datasets with high temporal resolution, in which a visualization product is generated for each timestep. The temporal dimension is parallelized by splitting the processors into several groups, or “time compartments”, and having each time compartment processes a timestep.
 – We show performance results from two tests using POP ocean data. The first tests, performed on Jaguar, show an improvement from 18 minutes to 5 minutes. The second set of tests show an improvement from 8 hours to 1 minute using the spatio-temporal pipeline.

• Spatio-Temporal Pipeline: UV-CDAT Use Case 2
 – The spatio-temporal pipeline can also be used to generate statistics from a set of timesteps. For example, a yearly average can be generated from monthly averages.
 – We show performance results from a climate dataset generated by Michael Wehner. Yearly statistics are generated given monthly values.
Spatio-Temporal

• Spatio-Temporal pipeline is currently implemented in UV-CDAT ParaView
 – Gui wizard to generate run scripts
 • Currently only supports Use Case 1

• Current Milestones
 – Paper on spatio-temporal pipeline
 • Goal: LDAV 2013 submission
 – Gui wizard support for Use Case 2
ParCAT

• Tighter UV-CDAT integration
 – Python wrapper
 – Long-term - Merge with ParaView Spatio-Temporal Pipelining

• Additional features as requested by the user community
 – For example, additional parallelizable functions
 – Ensure ParCAT can process ice and ocean model data sets

• Open source ParCAT
VisIt

• Enabling climate science efforts through a programmable parallel infrastructure within VisIt
• Integrating the research and production code developed by VDX into UV-CDAT
• highlight several new features
 – executing optimized climate science driven visualization code
 – enhancing it with custom R and Python code to extend the infrastructure